Yıl 2015, Cilt 21, Sayı 6, Sayfalar 224 - 238 2015-12-31

The Role of Mass Transfer in Membrane Systems
Kütle Aktarımının Membran Sistemlerindeki Rolü

Levent Gürel [1] , Hanife Büyükgüngör [2]

191 1499

Membranes are situated in the foreground among the considerably popular treatment systems in the last years. The use of membranes was become widespread in many fields such as drinking water treatment, wastewater treatment and obtaining drinking water from sea water. The predominance of membranes against the classical systems regarding the wastewater treatment, and the decreasing cost of membrane materials each day provided these systems to enter among the preferable options. There are considerably different types of membranes. Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) are the processes drawing most attention. One of the most important considerations in membrane processes is the amount of constituents passing from the membrane and rejecting by the membrane. Mass transfer concept arises in this place. Mass transfer is a critically important case used in the design of treatment systems and the estimation of efficiency. In addition to the points mentioned above, investigation of mass transfer occurring in membranes is important in comparing of different membrane types. In this review article, general information about the membranes, membrane types, uses of membranes and module designs are given, concept of mass transfer is viewed and the mass transfer processes realizing in these treatment systems are assessed.
Membranlar, son yıllarda oldukça popüler arıtım sistemleri arasında ön planda yer almaktadır. İçme suyu arıtımı, atıksu arıtımı ve deniz suyundan içme suyu eldesi gibi birçok alanda membranların kullanımı yaygınlaşmıştır. Özellikle membranların atıksuların arıtımı konusunda klasik sistemlere karşı olan üstünlükleri ve gün geçtikçe düşüş gösteren membran materyali maliyetleri, bu sistemlerin tercih edilebilir seçenekler arasına girmesini sağlamıştır. Membranların oldukça farklı türleri bulunmaktadır. Bunlar arasında mikrofiltrasyon (MF), ultrafiltrasyon (UF), nanofiltrasyon (NF) ve ters osmoz (RO) en fazla ilgi çeken proseslerdir. Membran proseslerde en önemli hususlardan biri, membrandan geçen ve membranda tutulan bileşen miktarlarıdır. Burada kütle aktarımı kavramı ortaya çıkmaktadır. Kütle aktarımı, arıtım sistemlerinin projelendirilmesinde ve verimlilik hesaplarının yapılmasında oldukça büyük önem taşıyan bir olaydır. Membranlarda gerçekleşen kütle aktarımının incelenmesi, yukarıda söz edilen konulara ek olarak, farklı membran tiplerinin karşılaştırılması açısından da önem taşımaktadır. Bu derleme makalesi kapsamında, membranlar ile ilgili genel bilgilere, membranların türlerine, kullanım alanlarına ve modül tasarımlarına yer verilmiş, kütle aktarımı kavramı incelenmiş ve membran arıtım sistemlerinde gerçekleşen kütle aktarımı işlemleri değerlendirilmiştir.
Membran prosesler, Kütle aktarımı, Su arıtımı
  • Juang RS, Wang YY. “Amino Acid Separation with D2EHPA by Solvent Extraction and Liquid Surfactant Membranes”. Journal of Membrane Science, 207(2), 241-252, 2002.
  • Kulkarni PS, Mahajani VV. “Application of Liquid Emulsion Membrane (LEM) Process for Enrichment of Molybdenum from Aqueous Solutions”. Journal of Membrane Science, 201, 123-135, 2002.
  • Dhaouadi H, Marrot B. “Olive Mill Wastewater Treatment in a Membrane Bioreactor: Process Feasibility and Performances”. Chemical Engineering Journal, 145(2), 225-231, 2008.
  • Yuan LM, Zhang CY, Zhang YQ, Ding Y, Xi DL. “Biological Nutrient Removal using an Alternating of Anoxic and Anaerobic Membrane Bioreactor (AAAM) Process”. Desalination, 221(1-3), 566-575, 2008.
  • Ladner DA, Subramani A, Kumar M, Adham SS, Clark MM. “Bench-Scale Evaluation of Seawater Desalination by Reverse Osmosis”. Desalination, 250(2), 490-499, 2010.
  • Reig M, Casas S, Aladjem C, Valderrama C, Gibert O, Valero F, Centeno CM, Larrotcha E, Cortina JL. “Concentration of NaCl from Seawater Reverse Osmosis Brines for the Chlor-Alkali Industry by Electrodialysis”. Desalination, 342, 107-117, 2014.
  • Park JS, Song JH, Yeon KH, Moon SH. “Removal of Hardness Ions from Tap Water using Electromembrane Processes”. Desalination, 202(1-3), 1-8, 2007.
  • McAdam EJ, Judd SJ. “A Review of Membrane Bioreactor Potential for Nitrate Removal from Drinking Water”. Desalination, 196(1-3), 135-148, 2006.
  • Qin J-J, Oo MH, Wai MN, Kekre KA. “TOC Removal in Reclamation of Municipal Wastewater by RO”. Separation and Purification Technology, 46(1-2), 125-128, 2005.
  • Chalatip R, Chawalit R, Nopawan R. “Removal of Haloacetic Acids by Nanofiltration”. Journal of Environmental Sciences, 21(1), 96-100, 2009.
  • Gürel L, Altaş L, Büyükgüngör H. “Removal of Lead from Wastewater using Emulsion Liquid Membrane Technique”. Environmental Engineering Science, 22(4), 411-420, 2005.
  • Gürel L, Büyükgüngör H. “Treatment of Slaughterhouse Plant Wastewater by using a Membrane Bioreactor”. Water Science & Technology, 64(1), 214-219, 2011.
  • Judd S. The MBR Book, 1st ed. Great Britain, Elsevier Ltd, 2006.
  • Cassano A, Adzet J, Molinari R, Buonomenna MG, Roig J, Drioli, E. “Membrane Treatment by Nanofiltration of Exhausted Vegetable Tannin Liquors from the Leather Industry”. Water Research, 37(10), 2426-2434, 2003.
  • El-Said N, El-Sheref E, Borai E. “Modeling of Transport of Cs (137) by Emulsion Liquid Membrane (18C6) in Xylene Promoted by Ephedrine Hydrochloride in Stripping Phase”. Journal of Membrane Science, 211(2), 183-191, 2003.
  • Ho WSW, Sirkar KK. Membrane Handbook. New York, USA, Van Nostrand Reinhold, 1992.
  • Hasan MA, Selim YT, Mohamed KM. “Removal of Chromium from Aqueous Waste Solution using Liquid Emulsion Membrane”. Journal of Hazardous Materials, 168(2-3), 1537-1541, 2009.
  • Koyuncu I, Topacik D. “Tekstil Endüstrisi Atıksularının Arıtılmasında Membran Teknolojisi Uygulamaları ve Ekonomik Değerlendirme”. Su Kirlenme Kontrolü Dergisi, 12(2), 47-61, 2002.
  • Chen JP, Mou H, Wang LK, Matsuura T. Membrane Filtration. Editors: Wang LK, Hung YT, Shammas NK. Advanced Physicochemical Treatment Processes, 2006, 4th ed. New Jersey, USA, Humana Press, 2006.
  • Hasar H, Kınacı C, Ünlü A. “Production of NonBiodegradable Compounds Based on Biomass Activity in a Submerged Ultrafiltration Hollow Fibre Membrane Bioreactor Treating Raw Whey”. Process Biochemistry, 39(11), 1631-1638, 2004.
  • Judd S, Jefferson B. Membranes for Industrial Wastewater Recovery and Re-use. Oxford, UK, Elsevier Advanced Technology, 2003.
  • Baker RW. Membrane Technology and Applications. 2nd ed. West Sussex, England, John Wiley & Sons Ltd., 2004.
  • Büyükgüngör H. Atıksu Arıtma Yöntemleri. Ondokuz Mayıs Üniversitesi, Samsun, Türkiye, 2003.
  • Yamashita AC, Tomisawa N. “Importance of Membrane Materials for Blood Purification Devices in Critical Care”. Transfusion and Apheresis Science, 40(1), 23-31, 2009.
  • Yang Q, Chung T-S, Santoso YE. “Tailoring Pore Size and Pore Size Distribution of Kidney Dialysis Hollow Fiber Membranes via Dual-Bath Coagulation Approach”. Journal of Membrane Science, 290(1-2), 153-163, 2007.
  • Paleologou M, Thibault A, Wong P-Y, Thompson R, Berry RM. “Enhancement of the Current Efficiency for Sodium Hydroxide Production from Sodium Sulphate in a TwoCompartment Bipolar Membrane Electrodialysis System”. Separation and Purification Technology, 11(3), 159-171.
  • Bukhovets AE, Savel’eva AM, Eliseeva TV. “Separation of Amino Acids Mixtures Containing Tyrosine in Electromembrane System”. Desalination, 241(1-3), 68-74, 2009.
  • Sadrzadeh M, Mohammadi T. “Treatment of Sea Water using Electrodialysis: Current Efficiency Evaluation”. Desalination, 249(1), 279-285, 2009.
  • Karakulski K, Gryta M, Morawski AW. “Pilot Plant Studies on the Removal of Trihalomethanes by Composite Reverse Osmosis Membranes”. Desalination, 140(3), 227-234, 2001.
  • Dababneh AJ, Al-Nimr MA. “A Reverse Osmosis Desalination Unit”. Desalination, 153(1-3), 265-272, 2003.
  • Wang Y, Chen X, Zhang J, Yin J, Wang H. Investigation of Microfiltration for Treatment of Emulsified Oily Wastewater from the Processing of Petroleum Products. Desalination, 249(3), 1223-1227, 2009.
  • Corral AF, Yenal U, Strickle R, Yan D, Holler E, Hill C, Ela WP, Arnold RG. “Comparison of Slow Sand Filtration and Microfiltration as Pretreatments for inland Desalination via Reverse Osmosis”. Desalination, 334(1), 1-9, 2014.
  • Arkhangelsky E, Gitis V. “Effect of Transmembrane Pressure on Rejection of Viruses by Ultrafiltration Membranes”. Separation and Purification Technology, 62(3), 619-628, 2008.
  • Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJJ. “Polysulfone Ultrafiltration Membranes Impregnated with Silver Nanoparticles Show Improved Biofouling Resistance and Virus Removal”. Water Research, 43(3), 715-723, 2009.
  • Chakraborty S, Purkait MK, DasGupta S, De S, Basu JK. “Nanofiltration of Textile Plant Effluent for Color Removal and Reduction in COD”. Separation and Purification Technology, 31(2), 141-151, 2003.
  • Fang W, Shi L, Wang R. “Interfacially Polymerized Composite Nanofiltration Hollow Fiber Membranes for Low-Pressure Water Softening”. Journal of Membrane Science, 430, 129–139, 2013.
  • Lee D, Oyama ST. “Gas Permeation Characteristics of a Hydrogen Selective Supported Silica Membrane”. Journal of Membrane Science, 210(2), 291-306, 2002.
  • Sun W, Wang X, Yang J, Lu J, Han H, Zhang Y, Wang J. “Pervaporation Separation of Acetic Acid-Water Mixtures through Sn-Substituted ZSM-5 Zeolite Membranes”. Journal of Membrane Science, 335(1-2), 83-88, 2009.
  • Han YJ, Wang KH, Lai JY, Liu YL. “Hydrophilic ChitosanModified Polybenzoimidazole Membranes for Pervaporation Dehydration of Isopropanol Aqueous Solutions”. Journal of Membrane Science, 463, 17-23, 2014.
  • Shamsipur M, Hashemi O, Lippolis V. “A Supported Liquid Membrane System for Simultaneous Separation of Silver(I) and Mercury (II) from Dilute Feed Solutions”. Journal of Membrane Science, 282(1-2), 322–327, 2006.
  • Zheng H, Chen J, Wang B, Zhao S. “Recovery of Copper Ions from Wastewater by Hollow Fiber Supported Emulsion Liquid Membrane”. Chinese Journal of Chemical Engineering, 21(8), 827-834, 2013.
  • Alkhudhiri A, Darwish N, Hilal N. “Membrane Distillation: A Comprehensive Review”. Desalination, 287, 2-18, 2012.
  • Matsuura T. Synthetic Membranes and Membrane Separation Processes. USA, CRC Press, 1993.
  • Cornel P, Krause S. Membrane Bioreactors for Wastewater Treatment. Editors: Li NN, Fane AG, Ho WSW, Matsuura T, Advanced Membrane Technology and Applications, New Jersey, John Wiley & Sons Ltd., 2008.
  • Kennedy MD, Kamanyi J, Rodriguez SGS, Lee NH, Schippers JC, Amy G. Water Treatment by Microfiltration and Ultrafiltration. Editors: Li NN, Fane AG, Ho WSW, Matsuura T. Advanced Membrane Technology and Applications, New Jersey, USA, John Wiley & Sons Ltd., 2008.
  • Lee KP, Arnot TC, Mattia D. “A Review of Reverse Osmosis Membrane Materials for DesalinationDevelopment to Date and Future Potential”. Journal of Membrane Science, 370(1-2), 1-22, 2011.
  • Sairam M, Loh XX, Bhole Y, Sereewatthanawut I, Li K, Bismarck A, Steinke JHG, Livingston AG. “Spiral-Wound Polyaniline Membrane Modules for Organic Solvent Nanofiltration (OSN)”. Journal of Membrane Science, 349(1-2), 123–129, 2010.
  • Li Y, Tung K. “The Effect of Curvature of a Spacer-Filled Channel on Fluid Flow in Spiral-Wound Membrane Modules”. Journal of Membrane Science, 319(1-2), 286-297, 2008.
  • Chanukya BS, Rastogi NK. “Extraction of Alcohol from Wine and Color Extracts using Liquid Emulsion Membrane”. Separation and Purification Technology, 105, 41-47, 2013.
  • Mehta A, Zydney AL. “Permeability and Selectivity Analysis for Ultrafiltration Membranes”. Journal of Membrane Science, 249(1-2), 245-249, 2005.
  • Vigneswaran S, Ngo HH, Singh Chaudhary D, Hung YT. Physicochemical Treatment Processes for Water Reuse. Editors: Wang LK, Hung YT, Shammas NK. Physicochemical Treatment Processes, New Jersey, Humana Press, 2004.
  • Charcosset C. “Membrane Processes in Biotechnology: An Overview”. Biotechnology Advances, 24(5), 482-492, 2006.
  • Tansel B, Sager J, Rector T, Garland J, Strayer RF, Levine L, Roberts M, Hummerick M, Bauer J. “Significance of Hydrated Radius and Hydration Shells on Ionic Permeability During Nanofiltration in Dead End and Cross Flow Modes”. Separation and Purification Technology, 51(1), 40-47, 2006.
  • Tsibranska IH, Tylkowski B. “Concentration of Ethanolic Extracts from Sideritis Ssp. L. by Nanofiltration: Comparison of Dead-End and Cross-Flow Modes”. Food and Bioproducts Processing, 91(2), 169-174, 2013.
  • Hosgor E, Kucuk T, Oksal IN, Kaymak DB. “Design and Control of Distillation Processes for Methanol-Chloroform Separation”. Computers and Chemical Engineering, 67, 166-177, 2014.
  • Feng J, Liu Y, Wang H, Zhao J, Cai Q, Wang X. “Gas Adsorption on Silicene: A Theoretical Study”. Computational Materials Science, 87, 218-226, 2014.
  • Simioni M, Kentish SE, Stevens GW. “Membrane Stripping: Desorption of Carbon Dioxide from Alkali Solvents”. Journal of Membrane Science, 378(1-2), 18-27, 2011.
  • Chang Z, Zheng H, Yang Y, Su Y, Duan Z. “Experimental Investigation of a Novel Multi-Effect Solar Desalination System Based on Humidification–Dehumidification Process”. Renewable Energy, 69, 253-259, 2014.
  • Zhou C, Wu Q, Lei T, Negulescu II. “Adsorption Kinetic and Equilibrium Studies for Methylene Blue Dye by Partially Hydrolyzed Polyacrylamide/Cellulose Nanocrystal Nanocomposite Hydrogels”. Chemical Engineering Journal, 251, 17-24, 2014.
  • De Lemos LR, Santos IJB, Rodrigues GD, Da Silva LHM, Da Silva MCH. “Copper Recovery from Ore by LiquidLiquid Extraction using Aqueous Two-Phase System”. Journal of Hazardous Materials, 237-238, 209-214, 2012.
  • [61] Noble RD, Way JD. Liquid Membrane Technology: An Overview. Editors: Noble RD, Way JD. Liquid Membranes Theory and Applications. Washington, DC, USA, American Chemical Society, 1987.
  • Scholes CA, Stevens GW, Kentish SE. “Membrane Gas Separation Applications in Natural Gas Processing”. Fuel, 96, 15-28, 2012.
  • Yeh H-M, Hsu C-W. “Analysis of Dialysis Coupled with Ultrafiltration Through Cocurrently Parallel-Flow Rectangular Membrane Modules”. Chemical Engineering and Processing: Process Intensification, 69, 90-94, 2013.
  • Lopez AM, Hestekin JA. “Separation of Organic Acids from Water using Ionic Liquid Assisted Electrodialysis”. Separation and Purification Technology, 116, 162-169, 2013.
  • Malaeb L, Ayoub GM. “Reverse Osmosis Technology for Water Treatment: State of the Art Review”. Desalination, 267(1), 1-8, 2011.
  • Yeh HM. “Thermal Diffusion in Branch Columns for Improved Separation”. Journal of Taiwan Institute of Chemical Engineers, 44(4), 560-565, 2013.
  • Treybal R. Mass Transfer Operations. 2nd ed. Tokyo, McGraw-Hill Kogakusha Ltd, 1968.
  • Sun Y, Yang K. “Analysis of Mass Transport Models Based on Maxwell-Stefan Theory and Fick’s Law for Protein Uptake to Porous Anion Exchanger”. Separation and Purification Technology, 60(2), 180-189, 2008.
  • Cussler EL. Diffusion, Mass Transfer in Fluid Systems, 3rd ed. New York, Cambridge University Press, 2009.
  • Altmann S, Tournassat C, Goutelard F, Parneix JC, Gimmi T, Maes N. “Diffusion-Driven Transport in Clayrock Formations”. Applied Geochemistry, 27(2), 463-478, 2012.
  • Knudsen JG, Hottel HC, Sarofim AF, Wankat PC, Knaebel KS. Heat and Mass Transfer. Editors: Green D, Perry R. Perry’s Chemical Engineers' Handbook, 8th ed. USA, McGraw-Hill Professional, 2007.
  • İnce E. “İkili Sıvı Sistemlerinin Difüzyon Katsayılarının Tayini”. Mühendislik Bilimleri Dergisi 7(3), 409-413, 2001.
  • Liu DHF, Liptak BG. Environmental Engineers’ Handbook, 2nd ed. USA, CRC Press, 1997.
  • Fisk PR, Jonathan P. A New Approach to the Prediction of Diffusion Coefficients. Editors: Compton RG, Hancock G. Comprehensive Chemical Kinetics − Volume 37 − Applications of Kinetic Modelling, 543-571, Amsterdam, Netherlands, Elsevier Science B.V., 1999.
  • Miyabe K, Isogai R. “Estimation of Molecular Diffusivity in Liquid Phase Systems by the Wilke-Chang Equation”. Journal Chromatography A, 1218(38), 6639-6645, 2011.
  • Abbasi A, Eslamloueyan R. “Determination of Binary Diffusion Coefficients of Hydrocarbon Mixtures using MLP and ANFIS Networks Based on QSPR Method”. Chemometrics and Intelligent Laboratory Systems, 132, 39-51, 2014.
  • Alpay E. Kütle Aktarımı. İzmir, Türkiye, Ege Üniversitesi Basımevi, 1984.
  • Fei WY, Bart HJ. “Predicting Diffusivities in Liquids by the Group Contribution Method”. Chemical Engineering and Processing, 40(6), 531-535, 2001.
  • Yamazaki IM, Geraldo LP, Paterson R. “Characterization of Polycarbonate Nuclear Track-Etched Membranes by Means of the Gas Permeation Method”. Nuclear Instruments and Methods in Physics Research A, 418(2-3), 491-496, 1998.
  • Medveď I, Černý R. “Surface Diffusion in Porous Media: A Critical Review”. Microporous and Mesoporous Materials, 142(2-3), 405-422, 2011.
  • Thielmann F. “Introduction into the Characterisation of Porous Materials by Inverse Gas Chromatography”. Journal of Chromatography A, 1037(1-2), 115-123, 2004.
  • Uysal B. Kütle Transferi Esasları ve Uygulamaları. 2. Baskı. Ankara, Türkiye, Gazi Kitabevi, 2003.
  • Cussler EL. Diffusion, Mass Transfer in Fluid Systems. USA, Cambridge University Press, 1984.
  • Kislik VS. Carrier-Facilitated Coupled Transport Through Liquid Membranes: General Theoretical Considerations and Influencing Parameters. Editor: Kislik VS. Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, 17-71, Amsterdam, Netherlands, Elsevier Science B.V., 2010.
  • Fouad EA, Bart HJ. “Emulsion Liquid Membrane Extraction of Zinc by a Hollow-Fiber Contactor”. Journal of Membrane Science, 307(2), 156-168, 2008.
  • Wang J, Dlamini DS, Mishra AK, Pendergast MTM, Wong MCY, Mamba BB, Freger V, Verliefde ARD, Hoek EMV. “A Critical Review of Transport through Osmotic Membranes”. Journal of Membrane Science, 454, 516-537, 2014.
  • Vennela N, Bhattacharjee S, De S. “Sherwood Number in Porous Microtube Due to Combined Pressure and Electroosmotically Driven Flow”. Chemical Engineering Science, 66(24), 6515-6524, 2011.
  • Azizi Z, Rezaeimanesh M, Abolghasemi H, Bahmanyar H. “Effective Diffusivity in a Structured Packed Column: Experimental and Sherwood Number Correlating Study”. Chemical Engineering Research and Design, 92(1), 43-53, 2014.
  • Hasegawa Y, Kasagi N. “Systematic Analysis of High Schmidt Number Turbulent Mass Transfer across Clean, Contaminated and Solid Interfaces”. International Journal of Heat and Fluid Flow, 29(3), 765-773, 2008.
  • Dinkelacker F, Manickam B, Muppala SPR. “Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames with an Effective Lewis Number Approach”. Combustion and Flame, 158(9), 1742-1749, 2011.
  • Saha SC, Brown RJ, Gu YT. “Scaling for the Prandtl Number of the Natural Convection Boundary Layer of an Inclined Flat Plate under Uniform Surface Heat Flux”. International Journal of Heat and Mass Transfer, 55(9-10), 2394-2401, 2012.
  • Heath M, Woodfield PL, Hall W, Monde M. “An Experimental Investigation of Convection Heat Transfer during Filling of a Composite-Fibre Pressure Vessel at Low Reynolds Number”. Experimental Thermal and Fluid Science, 54, 151-157, 2014.
  • García-Martín N, Silva V, Carmona FJ, Palacio L, Hernandez A, Pradanos P. “Pore Size Analysis from Retention of Neutral Solutes Through Nanofiltration Membranes. The Contribution of Concentration– Polarization”. Desalination, 344, 1-11, 2014.
  • Choquet C, Rosier C. “Effective Models for Reactive Flow under a Dominant Péclet Number and Order One Damköhler Number: Numerical Simulations”. Nonlinear Analysis: Real World Applications, 15, 345-360, 2014.
  • George SC, Thomas S. “Transport Phenomena through Polymeric Systems”. Progress in Polymer Science, 26(6), 985-1017, 2001.
  • Mulder M. Basic Principles of Membrane Technology. 2nd ed. Netherlands, Kluwer Academic Publishers, 1996.
  • Koyuncu I, Topacik D. “Effect of Organic Ion on the Separation of Salts by Nanofiltration Membranes”. Journal of Membrane Science, 195(2), 247-263, 2002.
  • Bhattacharyya D, Williams ME. Reverse Osmosis: Theory. Editors: Winston Ho WS, Sirkar KK. Membrane Handbook, 269-280, New York, USA, Van Nostrand Reinhold, 1992.
  • Perry M, Linder C. “Intermediate Reverse Osmosis Ultrafiltration (RO UF) Membranes for Concentration and Desalting of Low Molecular Weight Organic Solutes”. Desalination, 71(3), 233-245, 1989.
  • Koyuncu I. “Membran Proseslerde Kütle Transferi ve Nanofiltrasyon Membranları ile Tuz Gideriminde Organik İyon Etkisi”. Su Kirlenme Kontrolü Dergisi, 12(2), 33-45, 2002.
  • Ergas SJ, Rheinheimer DE. “Drinking Water Denitrification using a Membrane Bioreactor”. Water Research, 38(14-15), 3225-3232, 2004.
  • Lin S-H, Juang R-S. “Mass-Transfer in Hollow-Fiber Modules for Extraction and Back-Extraction of Copper(II) with LIX64N Carriers”. Journal of Membrane Science, 188(2), 251-262, 2001.
  • Nagaraj N, Patil G, Babu BR, Hebbar UH, Raghavarao KSMS, Nene S. “Mass Transfer in Osmotic Membrane Distillation”. Journal of Membrane Science, 268(1), 48-56, 2006.
  • Lin S, Chen C, Juang R. “Kinetic Analysis on Reactive Extraction of Aspartic Acid from Water in Hollow Fiber Membrane Modules”. Journal of Membrane Science, 281(1-2), 186-194, 2006.
  • Alguacil FJ, Alonso M, Sastre AM. “Modelling of Mass Transfer in Facilitated Supported Liquid Membrane Transport of Copper(II) using MOC-55 TD in Iberfluid”. Journal of Membrane Science, 184(1), 117-122, 2001.
  • Srisurichan S, Jiraratananon R, Fane A. “Mass Transfer Mechanisms and Transport Resistances in Direct Contact Membrane Distillation Process”. Journal of Membrane Science, 277(1-2), 186-194, 2006.
  • Fujioka T, Khan SJ, McDonald JA, Roux A, Poussade Y, Drewes JE, Nghiem LD. “N-Nitrosamine Rejection by Nanofiltration and Reverse Osmosis Membranes: The Importance of Membrane Characteristics”. Desalination, 316, 67-75, 2013.
  • Gherasim CV, Cuhorka J, Mikulášek P. “Analysis of Lead(II) Retention from Single Salt and Binary Aqueous Solutions by a Polyamide Nanofiltration Membrane: Experimental Results and Modelling”. Journal of Membrane Science, 436, 132-144, 2013.
  • Fierro D, Boschetti-de-Fierro A, Abetz V. “The SolutionDiffusion with Imperfections Model as a Method to Understand Organic Solvent Nanofiltration of Multicomponent Systems”. Journal of Membrane Science, 413-414, 91-101, 2012.
  • Chaabane T, Taha S, Taleb Ahmed M, Maachi R., Dorange G. “Coupled Model of Film Theory and the Nernst-Planck Equation in Nanofiltration”. Desalination, 206(1-3), 424-432, 2007.
Birincil Dil en
Konular
Dergi Bölümü Makale
Yazarlar

Yazar: Levent Gürel

Yazar: Hanife Büyükgüngör

Bibtex @ { pajes219125, journal = {Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi}, issn = {1300-7009}, eissn = {2147-5881}, address = {Pamukkale Üniversitesi}, year = {2015}, volume = {21}, pages = {224 - 238}, doi = {}, title = {The Role of Mass Transfer in Membrane Systems}, key = {cite}, author = {Gürel, Levent and Büyükgüngör, Hanife} }
APA Gürel, L , Büyükgüngör, H . (2015). The Role of Mass Transfer in Membrane Systems. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21 (6), 224-238. Retrieved from http://www.dergipark.gov.tr/pajes/issue/20561/219125
MLA Gürel, L , Büyükgüngör, H . "The Role of Mass Transfer in Membrane Systems". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21 (2015): 224-238 <http://www.dergipark.gov.tr/pajes/issue/20561/219125>
Chicago Gürel, L , Büyükgüngör, H . "The Role of Mass Transfer in Membrane Systems". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21 (2015): 224-238
RIS TY - JOUR T1 - The Role of Mass Transfer in Membrane Systems AU - Levent Gürel , Hanife Büyükgüngör Y1 - 2015 PY - 2015 N1 - DO - T2 - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 224 EP - 238 VL - 21 IS - 6 SN - 1300-7009-2147-5881 M3 - UR - Y2 - 2018 ER -
EndNote %0 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi The Role of Mass Transfer in Membrane Systems %A Levent Gürel , Hanife Büyükgüngör %T The Role of Mass Transfer in Membrane Systems %D 2015 %J Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi %P 1300-7009-2147-5881 %V 21 %N 6 %R %U
ISNAD Gürel, Levent , Büyükgüngör, Hanife . "Kütle Aktarımının Membran Sistemlerindeki Rolü". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21 / 6 (Aralık 2016): 224-238.